Objectives: Evaluate the performance of PET/MRI at tissue interfaces with different attenuation values for detecting lymph node (LN) metastases and for accurately measuring maximum standardised uptake values (SUVmax) in lung cancer patients.
Materials and method: Eleven patients underwent PET/CT and PET/MRI for staging, restaging or follow-up of suspected or known lung cancer. Four experienced readers determined the N stage of the patients for each imaging method in a randomised blinded way. Concerning metastases, SUVmax of FDG-avid LNs were measured in PET/CT and PET/MRI in all patients. A standard of reference was created with a fifth experienced independent reader in combination with a chart review. Results were analysed to determine interobserver agreement, SUVmax correlation between CT and MRI (three-segment model) attenuation correction and diagnostic performance of the two techniques.
Results: Overall interobserver agreement was high (κ = 0.86) for PET/CT and substantial (κ = 0.70) for PET/MRI. SUVmax showed strong positive correlation (Spearman's correlation coefficient = 0.93, P < 0.001) between the two techniques. Diagnostic performance of PET/MRI was slightly inferior to that of PET/CT, without statistical significance (P > 0.05).
Conclusions: PET/MRI using three-segment model attenuation correction for LN staging in lung cancer shows a strong parallel to PET/CT in terms of SUVmax, interobserver agreement and diagnostic performance.
Key points: •F18-FDG PET/MRI shows similar performance to F18-FDG PET/CT in lung cancer N staging. •PET/MRI has substantial interobserver agreement in N staging. •A three-segment model attenuation correction is reliable for assessing the mediastinum.