Oligosaccharyltransferase (OT) catalyzes the signature reaction of the asparagine-linked glycosylation pathway, namely, the transfer of preformed glycans from the lipid-linked oligosaccharide Glc3Man9GlcNAc2-P-P-Dolichol (G3M9Gn2-LLO) to appropriate asparaginyl residues on acceptor polypeptides. We have identified a reaction, possibly catalyzed by OT, that results in the hydrolysis or "transfer to water" of host LLOs in response to viral infection with release of a free G3M9Gn2 glycan. The loss of LLO ostensibly hinders N-glycosylation of viral polypeptides. This response is achieved by a novel stress-activated signaling pathway in which free mannose-6-phosphate (M6P) acts as a second-messenger. Here, we describe methods with permeabilized mammalian cells for activation of the M6P-regulated LLO hydrolysis, or transfer of glycan to water, in vitro.