Background: Currently glycaemic targets of <7.8 mmol/l without hypoglycaemia are recommended for diabetic patients on general wards before meals. Efficient and safe strategies to achieve these targets with subcutaneous insulin injections outside the intensive care setting are not well established. The aim of this trial was to evaluate a subcutaneous insulin algorithm, which incorporates insulin resistance due to individual features and acute illness, for correction of hyperglycaemia in general medical wards.
Methods: This was a two-centre, randomised controlled trial in two Swiss hospitals. Patients with initial plasma glucose levels >8 mmol/l were randomised to either an intervention group or a control group. The primary endpoint was the time in the glycaemic target range (5.5-7.0 mmol/l) within the first 48 hours.
Results: Patients in the intervention group (n = 67) had significantly lower plasma glucose levels during the first 48 hours as compared with control patients (n = 63) (7.7 ± 3.0 mmol/l; mean ± standard deviation [SD]) vs 9.7 ± 3.9 mmol/l, p <0.0001). The intervention group reached the glycaemic target range earlier (median 9.5 vs 24.0 hours, p <0.0001) and remained longer in this range (difference: 9.5 hours, 95% confidence interval [CI] 5.1, 13.9). There were more episodes of mild hypoglycaemia in the intervention group (19.4% vs 6.3%, absolute difference 13.5%, 95%CI 1.8, 24.3), with no difference in rates of severe hypoglycaemia.
Conclusions: Incorporation of insulin resistance factors into a subcutaneous insulin algorithm achieved early and sustained glycaemic control in noncritically ill patients admitted to general medical wards without apparent safety concerns. The overall clinical benefit of this strategy remains to be determined.