Systemic lack of canonical histamine receptor signaling results in increased resistance to autoimmune encephalomyelitis

J Immunol. 2013 Jul 15;191(2):614-22. doi: 10.4049/jimmunol.1203137. Epub 2013 Jun 14.

Abstract

Histamine (HA) is a key regulator of experimental allergic encephalomyelitis (EAE), the autoimmune model of multiple sclerosis. HA exerts its effects through four known G-protein-coupled receptors: H1, H2, H3, and H4 (histamine receptors; H(1-4)R). Using HR-deficient mice, our laboratory has demonstrated that H1R, H2R, H3R, and H4R play important roles in EAE pathogenesis, by regulating encephalitogenic T cell responses, cytokine production by APCs, blood-brain barrier permeability, and T regulatory cell activity, respectively. Histidine decarboxylase-deficient mice (HDCKO), which lack systemic HA, exhibit more severe EAE and increased Th1 effector cytokine production by splenocytes in response to myelin oligodendrocyte gp35-55. In an inverse approach, we tested the effect of depleting systemic canonical HA signaling on susceptibility to EAE by generating mice lacking all four known G-protein-coupled-HRs (H(1-4)RKO mice). In this article, we report that in contrast to HDCKO mice, H(1-4)RKO mice develop less severe EAE compared with wild-type animals. Furthermore, splenocytes from immunized H(1-4)RKO mice, compared with wild-type mice, produce a lower amount of Th1/Th17 effector cytokines. The opposing results seen between HDCKO and H1-4RKO mice suggest that HA may signal independently of H1-4R and support the existence of an alternative HAergic pathway in regulating EAE resistance. Understanding and exploiting this pathway has the potential to lead to new disease-modifying therapies in multiple sclerosis and other autoimmune and allergic diseases.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antigen-Presenting Cells
  • Blood-Brain Barrier / metabolism
  • CD4-Positive T-Lymphocytes / immunology
  • CD4-Positive T-Lymphocytes / metabolism
  • Cell Differentiation
  • Cells, Cultured
  • Cytokines / biosynthesis
  • Encephalomyelitis, Autoimmune, Experimental / immunology*
  • Encephalomyelitis, Autoimmune, Experimental / metabolism
  • Histamine / metabolism*
  • Histidine Decarboxylase / deficiency
  • Histidine Decarboxylase / genetics*
  • Histidine Decarboxylase / immunology
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Multiple Sclerosis / immunology
  • Myelin-Oligodendrocyte Glycoprotein / pharmacology
  • Peptide Fragments / pharmacology
  • Receptors, Histamine / deficiency
  • Receptors, Histamine / genetics*
  • Receptors, Histamine / metabolism*
  • Signal Transduction

Substances

  • Cytokines
  • Myelin-Oligodendrocyte Glycoprotein
  • Peptide Fragments
  • Receptors, Histamine
  • myelin oligodendrocyte glycoprotein (35-55)
  • Histamine
  • Histidine Decarboxylase