Background: Upper limb function plays a significant role in enhancing independence for individuals with tetraplegia. However, there is limited knowledge about the specific input of sensorimotor deficits on upper limb function. Thus the theoretical framework designed to develop the Graded Redefined Assessment of Strength Sensibility and Prehension (GRASSP) was used as a hypothetical model to analyze the impact of impairment on function.
Objective: To define the association of impairment (sensation, strength, and prehension measured by the GRASSP) to upper limb function as defined by functional measures (Capabilities of Upper Extremity Questionnaire, Spinal Cord Independence Measure).
Methods: A hypothetical model representing relationships by applying structural equation modeling was used to estimate the effect of the impairment domains in GRASSP on upper limb function. Data collected on 72 chronic individuals with tetraplegia was used to test the hypothetical model.
Results: Structural equation modeling confirmed strong associations between sensation, strength, and prehension with upper limb function, and determined 72% of the variance in "sensorimotor upper limb function" was explained by the model. Statistics of fit showed the data did fit the hypothesized model. Sensation and strength influence upper limb function directly and indirectly with prehension as the mediator.
Conclusions: The GRASSP is a sensitive diagnostic tool in distinguishing the relative contribution of strength, sensation and prehension to function. Thus, the impact of interventions on specific domains of impairment and related contribution on clinical recovery of the upper limb can be detailed to optimize rehabilitation programs.
Keywords: function; hand; impairment; tetraplegia; upper limb.