Background: Nucleic acid amplification techniques (NAT) in routine blood donor screening considerably reduce the diagnostic window phase period. Nevertheless, several reports of false-negative NAT results were published. Here, four cases of human immunodeficiency virus Type 1 (HIV-1) RNA-positive blood donations that escaped detection by NAT screening are described.
Study design and methods: A total of 2.7 million blood donations were screened for viral infections between January 2010 and October 2012 in our German Red Cross blood donation service. Four plasma specimens with false-negative NAT results were comparatively investigated with 12 CE-marked NAT assays. In two cases of putative HIV-1 variants the target region of the NAT assay was sequenced allowing comparison with the respective primers and probes.
Results: Most of the NAT assays used in routine blood donor screening with the 5'-long terminal repeat (LTR) as target region demonstrated deficiencies in detecting the viral variants and the low-viral-carrier donations. Sequence analysis revealed in one case a deletion of 56 nucleotides within the 5'-LTR preventing the binding of the probe accompanied by a neighbored insertion of another 52 nucleotides and several primer mismatches in another case. No false-negative results were obtained for these cases using dual-target assays. The viral load of the remaining two false-negative results was below the NAT's limit of detection.
Conclusion: HIV-1 is characterized by a high mutation rate and rapid generation of new viral variants. By the use of one target region for HIV-1 NAT assays there is a certain risk of false-negative results. Employing HIV-1 multi- and dual-target assays in routine blood donor screening seems to be a reasonable possibility to minimize this problem.
© 2013 American Association of Blood Banks.