Crowdsourcing for bioinformatics

Bioinformatics. 2013 Aug 15;29(16):1925-33. doi: 10.1093/bioinformatics/btt333. Epub 2013 Jun 19.

Abstract

Motivation: Bioinformatics is faced with a variety of problems that require human involvement. Tasks like genome annotation, image analysis, knowledge-base population and protein structure determination all benefit from human input. In some cases, people are needed in vast quantities, whereas in others, we need just a few with rare abilities. Crowdsourcing encompasses an emerging collection of approaches for harnessing such distributed human intelligence. Recently, the bioinformatics community has begun to apply crowdsourcing in a variety of contexts, yet few resources are available that describe how these human-powered systems work and how to use them effectively in scientific domains.

Results: Here, we provide a framework for understanding and applying several different types of crowdsourcing. The framework considers two broad classes: systems for solving large-volume 'microtasks' and systems for solving high-difficulty 'megatasks'. Within these classes, we discuss system types, including volunteer labor, games with a purpose, microtask markets and open innovation contests. We illustrate each system type with successful examples in bioinformatics and conclude with a guide for matching problems to crowdsourcing solutions that highlights the positives and negatives of different approaches.

Publication types

  • Research Support, N.I.H., Extramural
  • Review

MeSH terms

  • Computational Biology*
  • Crowdsourcing*
  • Games, Experimental
  • Sequence Alignment
  • Volunteers