Epidemiological studies in humans suggest that skeletal muscle aging is a risk factor for the development of several age-related diseases such as metabolic syndrome, cancer, Alzheimer's and Parkinson's disease. Here, we review recent studies in mammals and Drosophila highlighting how nutrient- and stress-sensing in skeletal muscle can influence lifespan and overall aging of the organism. In addition to exercise and indirect effects of muscle metabolism, growing evidence suggests that muscle-derived growth factors and cytokines, known as myokines, modulate systemic physiology. Myokines may influence the progression of age-related diseases and contribute to the intertissue communication that underlies systemic aging.
Keywords: exercise; intertissue communication during aging; myokine signaling; skeletal muscle aging; systemic aging.
© 2013 the Anatomical Society and John Wiley & Sons Ltd.