A new approach for the production of oriented films and fibers with angular-dependent reflective colors is presented. The process consists of spray coating a solution of cholesteric liquid-crystalline monomers onto a melt-processed and oriented polyamide-6 substrate followed by UV curing. Reflectivity measurements and optical microscopy show that a well-defined liquid-crystalline and planar alignment is obtained. It is further demonstrated that a reflection up to 80% is obtained by coating oriented films on both sides of the oriented substrate with a single-handedness cholesteric liquid-crystal coating. The high reflectivity is attributed to the close to half-wave retardation induced by the anisotropic polymer substrate. Also, polyamide-6 filaments are successfully coated and fibers are obtained with an angular-dependent color in a single dimension along the fiber direction, which originates from the planar cholesteric alignment on a curved surface.