Intensity oscillations in the carbon 1s ionization cross sections of 2-butyne

J Chem Phys. 2013 Jun 21;138(23):234310. doi: 10.1063/1.4810870.

Abstract

Carbon 1s photoelectron spectra for 2-butyne (CH3C≡CCH3) measured in the photon energy range from threshold to 150 eV above threshold show oscillations in the intensity ratio C2,3/C1,4. Similar oscillations have been seen in chloroethanes, where the effect has been attributed to EXAFS-type scattering from the substituent chlorine atoms. In 2-butyne, however, there is no high-Z atom to provide a scattering center and, hence, oscillations of the magnitude observed are surprising. The results have been analyzed in terms of two different theoretical models: a density-functional model with B-spline atom-centered functions to represent the continuum electrons and a multiple-scattering model using muffin-tin potentials to represent the scattering centers. Both methods give a reasonable description of the energy dependence of the intensity ratios.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Carbon / chemistry*
  • Electrons*
  • Ions / chemistry*
  • Photoelectron Spectroscopy
  • Photons
  • Scattering, Radiation

Substances

  • Ions
  • Carbon