Sleep-dependent neurophysiological processes in implicit sequence learning

J Cogn Neurosci. 2013 Nov;25(11):2003-14. doi: 10.1162/jocn_a_00439. Epub 2013 Jun 28.

Abstract

Behavioral studies have cast doubts about the role that posttraining sleep may play in the consolidation of implicit sequence learning. Here, we used event-related fMRI to test the hypothesis that sleep-dependent functional reorganization would take place in the underlying neural circuits even in the possible absence of obvious behavioral changes. Twenty-four healthy human adults were scanned at Day 1 and then at Day 4 during an implicit probabilistic serial RT task. They either slept normally (RS) or were sleep-deprived (SD) on the first posttraining night. Unknown to them, the sequential structure of the material was based on a probabilistic finite-state grammar, with 15% chance on each trial of replacing the rules-based grammatical (G) stimulus with a nongrammatical (NG) one. Results indicated a gradual differentiation across sessions between RTs (faster RTs for G than NG), together with NG-related BOLD responses reflecting sequence learning. Similar behavioral patterns were observed in RS and SD participants at Day 4, indicating time- but not sleep-dependent consolidation of performance. Notwithstanding, we observed at Day 4 in the RS group a diminished differentiation between G- and NG-related neurophysiological responses in a set of cortical and subcortical areas previously identified as being part of the network involved in implicit sequence learning and its offline processing during sleep, indicating a sleep-dependent processing of both regular and deviant stimuli. Our results suggest the sleep-dependent development of distinct neurophysiological processes subtending consolidation of implicit motor sequence learning, even in the absence of overt behavioral differences.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Brain / physiology
  • Brain Mapping
  • Circadian Rhythm
  • Data Interpretation, Statistical
  • Female
  • Humans
  • Image Processing, Computer-Assisted
  • Magnetic Resonance Imaging
  • Male
  • Models, Statistical
  • Oxygen / blood
  • Reaction Time / physiology
  • Self-Assessment
  • Serial Learning / physiology*
  • Sleep / physiology*
  • Surveys and Questionnaires
  • Young Adult

Substances

  • Oxygen