InGaAs/AlGaAs multiple quantum wells used for 4.3 μm mid-wavelength infrared quantum well infrared detectors were grown by molecular beam epitaxy. In composition loss was observed and quantitatively studied by high-resolution X-ray diffraction technology. By this In composition loss effect, the energy band engineering on the photo-response wavelength is not easily achieved. A thin AlGaAs barrier grown at low temperature is used to suppress the In atom desorption, and this growth process was verified to be able to adjust the photo-response wavelength as designed by energy band engineering in the photocurrent spectrum.