The levels of advanced glycation end products (AGEs) are increased under conditions of impaired glucose metabolism and/or oxidative stress, promoting insulin resistance and other endocrine abnormalities. AGEs play a major role in the pathogenesis of several diseases such as diabetes, atherosclerosis, polycystic ovary syndrome and Alzheimer's disease, contributing to progressive ageing. Receptor-based clearance of AGEs by the receptor for AGE (RAGE) and/or the macrophage scavenger receptor A (SR-A) is considered as a main factor for the regulation of the concentration of AGEs under these conditions. This study aimed to investigate the expression of RAGE (AGER) and SR-A (MSR1) under high/low-dietary AGE conditions in vivo and their potential contribution to the metabolic and sex hormonal profile of female rats. Female Wistar rats were fed a low-AGE or high-AGE diet for 3 months. Serum samples were collected at baseline and at the completion of the 3-month period for the measurements of metabolic and hormonal parameters. Peripheral blood mononuclear cells (PBMCs) were isolated for the determination of the expression of RAGE and SR-A. The high-AGE diet-fed rats exhibited increased glucose, insulin and testosterone levels as well as decreased oestradiol and progesterone levels compared with the low-AGE diet-fed ones, thus indicating a metabolic and hormonal dysregulation attributed to high-AGE dietary exposure. The expression of RAGE was significantly down-regulated in the PBMCs of the high-AGE diet-fed rats (P=0.041), and it was correlated negatively with insulin and testosterone levels and positively with progesterone levels. The expression of SR-A was also decreased in the high-AGE diet-fed rats to marginal significance. Decreased monocytic expression of scavenger receptors such as RAGE and SR-A may result in a higher deposition of AGEs in peripheral endocrine tissues, thus promoting endocrine-related abnormalities and diseases.
Keywords: AGEs; PCOS; RAGE; SR-A; endocrine dysregulation; insulin resistance.