Analysis of the Olive Fruit Fly Bactrocera oleae Transcriptome and Phylogenetic Classification of the Major Detoxification Gene Families

PLoS One. 2013 Jun 18;8(6):e66533. doi: 10.1371/journal.pone.0066533. Print 2013.

Abstract

The olive fruit fly Bactrocera oleae has a unique ability to cope with olive flesh, and is the most destructive pest of olives worldwide. Its control has been largely based on the use of chemical insecticides, however, the selection of insecticide resistance against several insecticides has evolved. The study of detoxification mechanisms, which allow the olive fruit fly to defend against insecticides, and/or phytotoxins possibly present in the mesocarp, has been hampered by the lack of genomic information in this species. In the NCBI database less than 1,000 nucleotide sequences have been deposited, with less than 10 detoxification gene homologues in total. We used 454 pyrosequencing to produce, for the first time, a large transcriptome dataset for B. oleae. A total of 482,790 reads were assembled into 14,204 contigs. More than 60% of those contigs (8,630) were larger than 500 base pairs, and almost half of them matched with genes of the order of the Diptera. Analysis of the Gene Ontology (GO) distribution of unique contigs, suggests that, compared to other insects, the assembly is broadly representative for the B. oleae transcriptome. Furthermore, the transcriptome was found to contain 55 P450, 43 GST-, 15 CCE- and 18 ABC transporter-genes. Several of those detoxification genes, may putatively be involved in the ability of the olive fruit fly to deal with xenobiotics, such as plant phytotoxins and insecticides. In summary, our study has generated new data and genomic resources, which will substantially facilitate molecular studies in B. oleae, including elucidation of detoxification mechanisms of xenobiotic, as well as other important aspects of olive fruit fly biology.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • ATP-Binding Cassette Transporters / genetics
  • Animals
  • Carboxylic Ester Hydrolases / genetics
  • Cytochrome P-450 Enzyme System / genetics
  • Genes, Insect*
  • Glutathione Transferase / genetics
  • Inactivation, Metabolic / genetics*
  • Phylogeny*
  • Tephritidae / classification
  • Tephritidae / genetics*
  • Transcriptome*

Substances

  • ATP-Binding Cassette Transporters
  • Cytochrome P-450 Enzyme System
  • Glutathione Transferase
  • Carboxylic Ester Hydrolases

Grants and funding

Part of this research was supported by ‘HRAKLEITOS II’ project, Operational Programme ‘Education and Life Long Learning’, which is co-funded by the European Social Found and National Resources and by the Greek Ministry of Rural Development and Food. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. No additional external funding was received for this study.