The tumor suppressor, microRNA-34 (miR-34), a transcriptional target of TP53, functions in a positive feedback loop to activate TP53. Although miR-34 can inhibit cancer cells carrying TP53 mutations, this feedback to TP53 may be a prerequisite for full miR-34 function and may restrict its therapeutic application to patients with intact TP53. To investigate the functional relationships between TP53 and miR-34, and that of other TP53-regulated miRNAs including miR-215/192, we have used a panel of isogenic cancer cell lines that differ only with respect to their endogenous TP53 status. miR-34-induced inhibition of cancer cell growth is the same in TP53-positive and TP53-negative cells. In contrast, miR-215/192 functions through TP53. In the absence of TP53, miR-34, but not miR-215/192, is sufficient to induce an upregulation of the cell cycle-dependent kinase inhibitor p21(CIP1/WAF1). We identify histone deacetylase 1 (HDAC1) as a direct target of miR-34 and demonstrate that repression of HDAC1 leads to an induction of p21(CIP1/WAF1) and mimics the miR-34 cellular phenotype. Depletion of p21(CIP1/WAF1) specifically interferes with the ability of miR-34 to inhibit cancer cell proliferation. The data suggest that miR-34 controls a tumor suppressor pathway previously reserved for TP53 and provides an attractive therapeutic strategy for cancer patients irrespective of TP53 status.