The ability of plants to compete effectively for nitrogen (N) resources is critical to plant survival. However, controversy surrounds the importance of organic and inorganic sources of N in plant nutrition because of our poor ability to visualize and understand processes happening at the root-microbial-soil interface. Using high-resolution nano-scale secondary ion mass spectrometry stable isotope imaging (NanoSIMS-SII), we quantified the fate of ¹⁵N over both space and time within the rhizosphere. We pulse-labelled the soil surrounding wheat (Triticum aestivum) roots with either ¹⁵NH₄⁺ or ¹⁵N-glutamate and traced the movement of ¹⁵N over 24 h. Imaging revealed that glutamate was rapidly depleted from the rhizosphere and that most ¹⁵N was captured by rhizobacteria, leading to very high ¹⁵N microbial enrichment. After microbial capture, approximately half of the ¹⁵N-glutamate was rapidly mineralized, leading to the excretion of NH₄⁺, which became available for plant capture. Roots proved to be poor competitors for ¹⁵N-glutamate and took up N mainly as ¹⁵NH₄⁺. Spatial mapping of ¹⁵N revealed differential patterns of ¹⁵N uptake within bacteria and the rapid uptake and redistribution of ¹⁵N within roots. In conclusion, we demonstrate the rapid cycling and transformation of N at the soil-root interface and that wheat capture of organic N is low in comparison to inorganic N under the conditions tested.
Keywords: NanoSIMS; amino acids; dissolved organic nitrogen; nitrogen cycling; nutrient uptake; rhizobacteria; rhizosphere architecture.
© 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.