Temporal variability and coherence of euphotic zone bacterial communities over a decade in the Southern California Bight

ISME J. 2013 Dec;7(12):2259-73. doi: 10.1038/ismej.2013.122. Epub 2013 Jul 18.

Abstract

Time-series are critical to understanding long-term natural variability in the oceans. Bacterial communities in the euphotic zone were investigated for over a decade at the San Pedro Ocean Time-series station (SPOT) off southern California. Community composition was assessed by Automated Ribosomal Intergenic Spacer Analysis (ARISA) and coupled with measurements of oceanographic parameters for the surface ocean (0-5 m) and deep chlorophyll maximum (DCM, average depth ≈ 30 m). SAR11 and cyanobacterial ecotypes comprised typically more than one-third of the measured community; diversity within both was temporally variable, although a few operational taxonomic units (OTUs) were consistently more abundant. Persistent OTUs, mostly Alphaproteobacteria (SAR11 clade), Actinobacteria and Flavobacteria, tended to be abundant, in contrast to many rarer yet intermittent and ephemeral OTUs. Association networks revealed potential niches for key OTUs from SAR11, cyanobacteria, SAR86 and other common clades on the basis of robust correlations. Resilience was evident by the average communities drifting only slightly as years passed. Average Bray-Curtis similarity between any pair of dates was ≈ 40%, with a slight decrease over the decade and obvious near-surface seasonality; communities 8-10 years apart were slightly more different than those 1-4 years apart with the highest rate of change at 0-5 m between communities <4 years apart. The surface exhibited more pronounced seasonality than the DCM. Inter-depth Bray-Curtis similarities repeatedly decreased as the water column stratified each summer. Environmental factors were better predictors of shifts in community composition than months or elapsed time alone; yet, the best predictor was community composition at the other depth (that is, 0-5 m versus DCM).

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Bacteria / classification
  • Bacteria / genetics
  • Bacterial Physiological Phenomena*
  • Biodiversity*
  • California
  • DNA, Ribosomal Spacer / genetics
  • Ecosystem*
  • RNA, Ribosomal, 16S / genetics
  • Seasons*
  • Seawater / microbiology*
  • Water Microbiology*

Substances

  • DNA, Ribosomal Spacer
  • RNA, Ribosomal, 16S