Background: CD44 is a molecular marker associated with cancer stem cell populations and treatment resistance in glioma. More effective therapies will result from approaches aimed at targeting glioma cells high in CD44.
Methods: Glioma-initiating cell lines were derived from fresh surgical glioblastoma samples. Expression of tissue transglutaminase 2 (TGM2) was attenuated through lentivirus-mediated short hairpin RNA knockdown. MTT assay [(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] was used to evaluate the growth inhibition induced by TGM2 inhibitor. Terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling was used to evaluate cell apoptosis following TGM2 inhibition. CD44(+) glioma stem cells were sorted by flow cytometry. A nude mice orthotopic xenograft model was used to evaluate the in vivo effect of TGM2 inhibitor.
Results: TGM2 was highly expressed in CD44-high glioblastoma tissues and tumor-derived glioma-initiating cell lines. TGM2 knockdown impaired cell proliferation and induced apoptosis in CD44-high glioma-initiating cell lines. Further studies indicated that expression of inhibitor of DNA binding 1 protein (ID1) is regulated by TGM2 and might be an important mediator for TGM2-regulated cell proliferation in CD44-high glioma-initiating cell lines. TGM2 inhibitor reduces ID1 expression, suppresses cell proliferation, and induces apoptosis in CD44-high glioma-initiating cell lines. Furthermore, TGM2 is highly expressed in CD44(+) glioma stem cells, while pharmacological inhibition of TGM2 activity preferentially eliminates CD44(+) glioma stem cells. Consistently, TGM2 inhibitor treatment reduced ID1 expression and induced apoptosis in our orthotopic mice xenograft model, which can be translated into prolonged median survival in tumor-bearing mice.
Conclusions: TGM2 regulates ID1 expression in glioma-initiating cell lines high in CD44. Targeting TGM2 could be an effective strategy to treat gliomas with high CD44 expression.
Keywords: apoptosis; cell proliferation; glioma; tissue transglutaminase; tumor initiating cells.