Two sets of pyrimidine nucleoside derivatives bearing extended alkyloxymethyl or alkyltriazolidomethyl substituents at position 5 of the nucleobase were synthesized and evaluated as potential antituberculosis agents. The impact of modifications at 3'- and 5'-positions of the carbohydrate moiety on the antimycobacterial activity and cytotoxicity was studied. The highest effect was shown for 5-dodecyloxymethyl-2'-deoxyuridine, 5-decyltriazolidomethyl-2'-deoxyuridine, and 5-dodecyltriazolidomethyl-2'-deoxycytidine. They effectively inhibited the growth of two Mycobacterium tuberculosis strains in vitro, laboratory H37Rv (MIC99=20, 10, and 20μg/mL, respectively) and clinical MDR MS-115 resistant to five top antituberculosis drugs (МIC99=50, 10, and 10μg/mL, respectively).
Keywords: Inhibitor; Mycobacterium tuberculosis; Nucleoside; Synthesis.
Copyright © 2013 Elsevier Ltd. All rights reserved.