Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage

Nature. 2013 Aug 29;500(7464):567-70. doi: 10.1038/nature12375. Epub 2013 Jul 28.

Abstract

Anaerobic oxidation of methane (AOM) is critical for controlling the flux of methane from anoxic environments. AOM coupled to iron, manganese and sulphate reduction have been demonstrated in consortia containing anaerobic methanotrophic (ANME) archaea. More recently it has been shown that the bacterium Candidatus 'Methylomirabilis oxyfera' can couple AOM to nitrite reduction through an intra-aerobic methane oxidation pathway. Bioreactors capable of AOM coupled to denitrification have resulted in the enrichment of 'M. oxyfera' and a novel ANME lineage, ANME-2d. However, as 'M. oxyfera' can independently couple AOM to denitrification, the role of ANME-2d in the process is unresolved. Here, a bioreactor fed with nitrate, ammonium and methane was dominated by a single ANME-2d population performing nitrate-driven AOM. Metagenomic, single-cell genomic and metatranscriptomic analyses combined with bioreactor performance and (13)C- and (15)N-labelling experiments show that ANME-2d is capable of independent AOM through reverse methanogenesis using nitrate as the terminal electron acceptor. Comparative analyses reveal that the genes for nitrate reduction were transferred laterally from a bacterial donor, suggesting selection for this novel process within ANME-2d. Nitrite produced by ANME-2d is reduced to dinitrogen gas through a syntrophic relationship with an anaerobic ammonium-oxidizing bacterium, effectively outcompeting 'M. oxyfera' in the system. We propose the name Candidatus 'Methanoperedens nitroreducens' for the ANME-2d population and the family Candidatus 'Methanoperedenaceae' for the ANME-2d lineage. We predict that 'M. nitroreducens' and other members of the 'Methanoperedenaceae' have an important role in linking the global carbon and nitrogen cycles in anoxic environments.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anaerobiosis
  • Archaea / classification*
  • Archaea / metabolism*
  • Bacteria / classification
  • Bacteria / metabolism
  • Bioreactors
  • Metagenome
  • Methane / metabolism*
  • Nitrates / metabolism*
  • Nitrites / metabolism
  • Nitrogen Cycle
  • Oxidation-Reduction
  • Quaternary Ammonium Compounds / metabolism
  • Single-Cell Analysis
  • Transcriptome

Substances

  • Nitrates
  • Nitrites
  • Quaternary Ammonium Compounds
  • Methane