A field-based metabolomic study was conducted during a shutdown of a pulp and paper mill (PPM) to assess the impacts of treated PPM effluent on endogenous polar metabolites in fathead minnow (FHM; Pimephales promelas) livers. Caged male and female FHMs were deployed at a Great Lakes area of concern during multiple periods (pre-, during, and post-shutdown) near the outflow for a wastewater treatment plant. Influent to this plant is typically 40% PPM effluent by volume. Additional FHMs were exposed to reference lake water under laboratory conditions. A bioassay using T47D-KBluc cells showed that estrogenic activity of receiving water near the outflow declined by 46% during the shutdown. We then used (1)H NMR spectroscopy and principal component analysis to profile abundances of hepatic endogenous metabolites for FHMs. Profiles for males deployed pre-shutdown in receiving water were significantly different from those for laboratory-control males. Profiles were not significantly different for males deployed during the shutdown, but they were significant again for those deployed post-shutdown. Impacts of treated effluent from this PPM were sex-specific, as differences among profiles of females were largely nonsignificant. Thus, we demonstrate the potential utility of field-based metabolomics for performing biologically based exposure monitoring and evaluating remediation efforts occurring throughout the Great Lakes and other ecosystems.