An automated stochastic docking program with a graphical user interface, RANDOMDOCK (RD), has been developed to aid the development of molecularly imprinted polymers and xerogels. RD supports computations with ab initio and semiempirical quantum chemistry programs. The RD algorithms have been tested by searching for the most stable geometries of a varying number of methacrylic acid molecules interacting with nicotinamide. The optimal structures found are either as stable or more stable than those previously proposed for this molecularly imprinted polymer, illustrating that RD is capable of identifying the lowest-energy structures out of a potentially vast number of possible configurations. RD was subsequently applied to determine the most favorable binding sites between silane molecules and tetracycline (TC) as well as TC analogues. Hydrogen bonding between the templates and a silane is an important determinant of stability. Dispersion interactions are also sizable, sometimes dominant, especially between the largest silane and TC analogues not possessing a site readily available for hydrogen bonding. We highlight the importance of exploring the full intermolecular potential energy landscape when studying systems which may not afford highly specific interactions.