Metal complexes (M = Zn, Sn, and Pb) of 2-phosphinobenzenethiolates: insights into ligand folding and hemilability

Inorg Chem. 2013 Sep 3;52(17):9875-84. doi: 10.1021/ic400990n. Epub 2013 Aug 12.

Abstract

The divalent metal complexes M(II){(SC6H4-2-PR2)-κ(2)S,P}2 (3-7, and 9-11) (M = Zn, Sn, or Pb; R = (i)Pr, (t)Bu, or Ph), the Sn(IV) complexes Sn{(SC6H4-2-PR2)-κ(2)-S,P}Ph2Cl (12 and 13) (R = (i)Pr and (t)Bu), and the ionic Sn(IV) complexes [Sn{(SC6H4-2-PR2)-κ(2)-S,P}Ph2][BPh4] (14 and 15) (R = (i)Pr and (t)Bu) have been prepared and characterized by multinuclear NMR spectroscopy and single crystal X-ray diffraction when suitable crystals were afforded. The Sn(II) and Pb(II) complexes with R = Ph, (i)Pr, or (t)Bu (5, 6, 9, and 10) demonstrated ligand "folding" hinging on the P,S vector-a behavior driven by the repulsions of the metal/phosphorus and metal/sulfur lone pairs and increased M-S sigma bonding strength. This phenomenon was examined by density functional theory (DFT) calculations for the compounds in both folded and unfolded states. The Sn(IV) compound 13 (R = (t)Bu) crystallized with the phosphine in an axial position of the pseudotrigonal bipyramidal complex and also exhibited hemilability in the Sn-P dative bond, while compound 12 (R = (i)Pr), interestingly, crystallized with phosphine in an equatorial position and did not show hemilability. Finally, the crystal structure of 15 (R = (t)Bu) revealed the presence of an uncommon, 4-coordinate, stable Sn(IV) cation.