Assessment of regional myocardial and renal blood flow with copper-PTSM and positron emission tomography

Circulation. 1990 Sep;82(3):990-7. doi: 10.1161/01.cir.82.3.990.

Abstract

We recently demonstrated in isolated, perfused hearts that radiolabeled pyruvaldehyde bis(N4-methylthiosemicarbazonato)copper(II) (Cu-PTSM) is well extracted throughout a range of conditions including ischemia, hypoxia, and hyperemia. Once extracted, binding of radioactivity by the isolated heart was essentially irreversible, giving this tracer microspherelike qualities. Because Cu-PTSM can be readily prepared with the generator-produced positron-emitting copper 62 and other gamma- or positron-emitting copper radionuclides, we evaluated its usefulness for measuring regional myocardial and renal blood flow in vivo in intact dogs at rest, after ischemia, or after coronary hyperemia was induced by intravenous administration of dipyridamole. After intravenous administration of radiolabeled Cu-PTSM, the tracer cleared rapidly from the blood. Myocardial uptake of single photon-emitting 67Cu-labeled Cu-PTSM was measured directly in myocardial samples 15 minutes after tracer administration, and it increased proportionally with blood flow throughout the flow range (estimated concomitantly with radiolabeled microspheres) of 0.0-6.0 ml/g/min (n = 340 samples from 17 dogs, r = 0.99, Ycopper radioactivity = 85Xmicrosphere flow -7 chi 2 + 17). Renal uptake of radiolabeled Cu-PTSM was also proportional to blood flow. Positron emission tomography was performed in four intact dogs after intravenous administration of 64Cu-labeled Cu-PTSM (19% positron decay, t1/2 = 12.8 hours). High-quality images of heart and kidney were obtained. Accordingly, radiolabeled Cu-PTSM should be a useful, generator-produced tracer for estimating regional myocardial and renal blood flow with positron emission tomography.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Copper
  • Copper Radioisotopes
  • Coronary Circulation*
  • Dogs
  • Kidney / metabolism
  • Myocardium / metabolism
  • Organometallic Compounds*
  • Renal Circulation*
  • Thiosemicarbazones*
  • Tomography, Emission-Computed*

Substances

  • Copper Radioisotopes
  • Organometallic Compounds
  • Thiosemicarbazones
  • copper pyruvaldehyde bis(N(4)-methylthiosemicarbazone) complex
  • Copper