The linear ubiquitin chain assembly complex (LUBAC) plays a crucial role in activating the canonical NF-κB pathway, which is important for B-cell development and function. Here, we describe a mouse model (B-HOIP(Δlinear)) in which the linear polyubiquitination activity of LUBAC is specifically ablated in B cells. Canonical NF-κB and ERK activation, mediated by the tumour necrosis factor (TNF) receptor superfamily receptors CD40 and TACI, was impaired in B cells from B-HOIP(Δlinear) mice due to defective activation of the IKK complex; however, B-cell receptor (BCR)-mediated activation of the NF-κB and ERK pathways was unaffected. B-HOIP(Δlinear) mice show impaired B1-cell development and defective antibody responses to thymus-dependent and thymus-independent II antigens. Taken together, these data suggest that LUBAC-mediated linear polyubiquitination is essential for B-cell development and activation, possibly via canonical NF-κB and ERK activation induced by the TNF receptor superfamily, but not by the BCR.