The use of new surface-modified poly(2-hydroxyethyl methacrylate) hydrogels in tissue engineering: treatment of the surface with fibronectin subunits versus Ac-CGGASIKVAVS-OH, cysteine, and 2-mercaptoethanol modification

J Biomed Mater Res A. 2014 Jul;102(7):2315-23. doi: 10.1002/jbm.a.34910. Epub 2013 Aug 30.

Abstract

Superporous poly(2-hydroxyethyl methacrylate) is successfully used as a scaffold material for tissue engineering; however, it lacks functional groups that support cell adhesion. The objective of this study was to investigate the cell-adhesive properties of biomimetic ligands, such as laminin-derived Ac-CGGASIKVAVS-OH (SIKVAV) peptide and fibronectin subunits (Fn), as well as small molecules exemplified by 2-mercaptoethanol (ME) and cysteine (Cys), immobilized on a copolymer of 2-hydroxyethyl methacrylate (HEMA) with 2-aminoethyl methacrylate (AEMA) by a maleimide-thiol coupling reaction. The maleimide group was introduced to the P(HEMA-AEMA) hydrogels by the reaction of their amino groups with N-γ-maleimidobutyryl-oxysuccinimide ester (GMBS). Mesenchymal stem cells (MSCs) were used to investigate the cell adhesive properties of the modified hydrogels. A significantly larger area of cell growth as well as a higher cell density were found on Fn- and SIKVAV-modified hydrogels when compared to the ME- and Cys-modified supports or neat P(HEMA-AEMA). Moreover, Fn-modification strongly stimulated cell proliferation. The ability of MSCs to differentiate into adipocytes and osteoblasts was maintained on both Fn- and SIKVAV-modifications, but it was reduced on ME-modified hydrogels and neat P(HEMA-AEMA). The results show that the immobilization of SIKVAV and Fn-subunits onto superporous P(HEMA-AEMA) hydrogels via a GMBS coupling reaction improves cell adhesive properties. The high proliferative activity observed on Fn-modified hydrogels suggests that the immobilized Fn-subunits maintain their bioactivity and thus represent a promising tool for application in tissue engineering.

Keywords: 2-hydroxyethyl methacrylate; IKVAV (Ile-Lys-Val-Ala-Val) peptide; fibronectin; hydrogel; scaffold; tissue engineering.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Differentiation
  • Cysteine / chemistry*
  • Fibronectins / chemistry*
  • Hydrogels*
  • Mercaptoethanol / chemistry*
  • Mesenchymal Stem Cells / cytology
  • Microscopy, Electron, Scanning
  • Peptides / chemistry*
  • Polyhydroxyethyl Methacrylate / chemistry*
  • Rats
  • Surface Properties
  • Tissue Engineering*

Substances

  • Fibronectins
  • Hydrogels
  • Peptides
  • Polyhydroxyethyl Methacrylate
  • Mercaptoethanol
  • Cysteine