Purpose: We conducted genome-wide miRNA-sequencing (miRNA-seq) in primary cancer tissue from patients of lung adenocarcinoma to identify markers for the presence of lymph node metastasis.
Experimental design: Markers for lymph node metastasis identified by sequencing were validated in a separate cohort using quantitative PCR. After additional validation in the The Cancer Genome Atlas (TCGA) dataset, functional characterization studies were conducted in vitro.
Results: MiR-31 was upregulated in lung adenocarcinoma tissues from patients with lymph node metastases compared with those without lymph node metastases. We confirmed miR-31 to be upregulated in lymph node-positive patients in a separate patient cohort (P = 0.009, t test), and to be expressed at higher levels in adenocarcinoma tissue than in matched normal adjacent lung tissues (P < 0.0001, paired t test). MiR-31 was then validated as a marker for lymph node metastasis in an external validation cohort of 233 lung adenocarcinoma cases of the TCGA (P = 0.031, t test). In vitro functional assays showed that miR-31 increases cell migration, invasion, and proliferation in an ERK1/2 signaling-dependent manner. Notably, miR-31 was a significant predictor of survival in a multivariate cox regression model even when controlling for cancer staging. Exploratory in silico analysis showed that low expression of miR-31 is associated with excellent survival for T2N0 patients.
Conclusions: We applied miRNA-seq to study microRNomes in lung adenocarcinoma tissue samples for the first time and potentially identified a miRNA predicting the presence of lymph node metastasis and survival outcomes in patients of lung adenocarcinoma.
©2013 AACR.