The development of methods for reversibly folding membrane proteins in a two-state manner remains a considerable challenge for studies of membrane protein stability. In recent years, a variety of techniques have been established and studies of membrane protein folding thermodynamics in the native bilayer environments have become feasible. Here we present the thiol-disulfide exchange method, a promising experimental approach for investigating the thermodynamics of transmembrane (TM) helix-helix association in membrane-mimicking environments. The method involves initiating disulfide cross-linking of a protein under reversible redox conditions in a thiol-disulfide buffer and quantitative assessment of the extent of cross-linking at equilibrium. This experimental method provides a broadly applicable tool for thermodynamic studies of folding, oligomerization, and helix-helix interactions of membrane proteins.