Introduction: Medium-term results for total ankle replacement (TAR) are in general satisfactory, but there is a high redo rate for periprosthetic osteolysis associated with the AES implant.
Hypothesis: Comparing radioclinical findings and histologic analysis of implant revision procedure specimens can account for the elevated rate of osteolysis associated with the AES TAR implant.
Material and method: In a prospective series of 84 AES TAR implants (2003-2008), 25 underwent revision for osteolysis (including three undergoing revision twice) at a mean 59.8 months. Eight patients had hydroxyapatite (HA) coated models and the others had titanium-hydroxyapatite (Ti-HA) coatings. Radiographs were systematically analyzed on Besse's protocol and evolution was monitored on AOFAS scores. The 94 specimens taken for histologic analysis during revision were re-examined, focusing specifically on foreign bodies.
Results: Macroscopically, no metallosis or polyethylene wear was found at revision. AOFAS global and pain scores fell respectively from 89.7/100 at 1 year postoperatively to 72.9 before revision and from 32.5/40 to 20.6/40, although global scores were unchanged in 25% of patients. Radiologically, all patients showed tibial and talar osteolytic lesions, 45% showed cortical lysis and in 25% the implant had collapsed into the cysts. All specimens showed macrophagic granulomatous inflammatory reactions in contact with a foreign body; the cysts showed necrotic remodeling. Some of the foreign bodies could be identified on optical histologic examination with polyethylene in 95% of the specimens and metal in 60% (100% of HA-coated models and 33.3% of Ti-HA-coated models). Unidentifiable material was associated: a brownish pigment in Ti-HA-coated models (33.3%) and flakey bodies in 44.4% of the HA-coated models and 18.2% of the Ti-HA-coated models.
Discussion: The phenomenon of periprosthetic osteolysis is still poorly understood, although implant wear debris seems to be implicated. All the patients with HA-coated implants with modular tibial stem had metal particles in the tissue around the implant, although their exact nature could not be determined. The double-layer Ti-HA coating may induce delamination by fretting while the biological bone anchorage is forming.
Level of evidence: Prospective cohort study - Level IV.
Keywords: Histology; Periprosthetic osteolysis; Total ankle arthroplasty.
Copyright © 2013 Elsevier Masson SAS. All rights reserved.