By means of density functional theory calculations, the cluster expansion method, and Monte Carlo simulations, we identify the stable spatial configurations (ground states) for [100] CSi, GeSi, and SnSi alloy nanowires (NWs) across compositions. In particular, we find that stable configurations of GeSiNWs and SnSiNWs exhibit core-shell segregation tendencies, while those of CSiNWs favor ordering. Moreover, we show compositional ranges where the band gaps are expected to vary linearly with composition, allowing predictable band gap fine-tuning. We also predict composition ranges where the spatial separation of near-band gap states are imminent, making it possible for electron-hole charge separation. By addressing both the issues of stability and the compositional trend of electronic band structure, our work should prove useful for designing alloy NWs of smaller dimensions.