Multiple alignment-free sequence comparison

Bioinformatics. 2013 Nov 1;29(21):2690-8. doi: 10.1093/bioinformatics/btt462. Epub 2013 Aug 29.

Abstract

Motivation: Recently, a range of new statistics have become available for the alignment-free comparison of two sequences based on k-tuple word content. Here, we extend these statistics to the simultaneous comparison of more than two sequences. Our suite of statistics contains, first, C(*)1 and C(S)1, extensions of statistics for pairwise comparison of the joint k-tuple content of all the sequences, and second, C(*)2, C(S)2 and C(geo)2, averages of sums of pairwise comparison statistics. The two tasks we consider are, first, to identify sequences that are similar to a set of target sequences, and, second, to measure the similarity within a set of sequences.

Results: Our investigation uses both simulated data as well as cis-regulatory module data where the task is to identify cis-regulatory modules with similar transcription factor binding sites. We find that although for real data, all of our statistics show a similar performance, on simulated data the Shepp-type statistics are in some instances outperformed by star-type statistics. The multiple alignment-free statistics are more sensitive to contamination in the data than the pairwise average statistics.

Availability: Our implementation of the five statistics is available as R package named 'multiAlignFree' at be http://www-rcf.usc.edu/∼fsun/Programs/multiAlignFree/multiAlignFreemain.html.

Contact: [email protected].

Supplementary information: Supplementary data are available at Bioinformatics online.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Binding Sites
  • Data Interpretation, Statistical
  • Mice
  • Regulatory Elements, Transcriptional
  • Sequence Alignment
  • Sequence Analysis, DNA / methods*
  • Transcription Factors / metabolism

Substances

  • Transcription Factors