Horizontal movements, migration patterns, and population structure of whale sharks in the Gulf of Mexico and northwestern Caribbean sea

PLoS One. 2013 Aug 21;8(8):e71883. doi: 10.1371/journal.pone.0071883. eCollection 2013.

Abstract

Whale sharks, Rhincodon typus, aggregate by the hundreds in a summer feeding area off the northeastern Yucatan Peninsula, Mexico, where the Gulf of Mexico meets the Caribbean Sea. The aggregation remains in the nutrient-rich waters off Isla Holbox, Isla Contoy and Isla Mujeres, Quintana Roo for several months in the summer and then dissipates between August and October. Little has been known about where these sharks come from or migrate to after they disperse. From 2003-2012, we used conventional visual tags, photo-identification, and satellite tags to characterize the basic population structure and large-scale horizontal movements of whale sharks that come to this feeding area off Mexico. The aggregation comprised sharks ranging 2.5-10.0 m in total length and included juveniles, subadults, and adults of both sexes, with a male-biased sex ratio (72%). Individual sharks remained in the area for an estimated mean duration of 24-33 days with maximum residency up to about 6 months as determined by photo-identification. After leaving the feeding area the sharks showed horizontal movements in multiple directions throughout the Gulf of Mexico basin, the northwestern Caribbean Sea, and the Straits of Florida. Returns of individual sharks to the Quintana Roo feeding area in subsequent years were common, with some animals returning for six consecutive years. One female shark with an estimated total length of 7.5 m moved at least 7,213 km in 150 days, traveling through the northern Caribbean Sea and across the equator to the South Atlantic Ocean where her satellite tag popped up near the Mid-Atlantic Ridge. We hypothesize this journey to the open waters of the Mid-Atlantic was for reproductive purposes but alternative explanations are considered. The broad movements of whale sharks across multiple political boundaries corroborates genetics data supporting gene flow between geographically distinct areas and underscores the need for management and conservation strategies for this species on a global scale.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animal Migration / physiology*
  • Animals
  • Atlantic Ocean
  • Caribbean Region
  • Feeding Behavior / physiology
  • Female
  • Florida
  • Geography
  • Gulf of Mexico
  • Male
  • Mexico
  • Movement / physiology*
  • Oceans and Seas
  • Population Density
  • Population Dynamics
  • Seasons*
  • Sex Factors
  • Sharks / physiology*
  • Time Factors

Grants and funding

This research was supported by funding from Georgia Aquarium (www.georgiaaquarium.org), Christopher Reynolds Foundation (www.creynolds.org), National Geographic Society (www.ngs.org), Mote Marine Laboratory (www.mote.org) and an anonymous private foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.