NiMnO3-nitrogen doped graphene composite has been synthesized by a simple hydrothermal method and its supercapacitor performance investigated. The composite exhibits a specific capacitance of 750.2 F g(-1) in 1 M Na2SO4 at a scan rate of 1 mV s(-1). Nitrogen insertion inside the carbon lattice plays a crucial role in the enhancement of the overall specific capacitance and its long-term stability. This reproducible and superior performance of NiMnO3-nitrogen doped graphene composite make it attractive as a candidate for energy storage materials.