Purpose: Resveratrol (RSV) alleviates oxidative damage in human adult retinal pigment epithelial (ARPE) cells. Mitochondrial bioenergetics is associated with oxidative stress. The purpose of this study was to examine the role of mitochondrial bioenergetics in the cytoprotective effect of RSV. Its role in protection against the adverse effects of cigarette smoke (CS) in experimental choroidal neovascularization (CNV) was also examined.
Methods: Cultured ARPE-19 cells were treated with acrolein alone or acrolein with added RSV. Temporal changes in cell viability, expression of the antioxidant protein, and mitochondrial bioenergetics were evaluated. In an animal study, CNV lesions were created in Brown Norway rats by laser-induced photocoagulation. Effects of CS alone or with additional RSV treatment on CNV lesions were quantified by fundus fluorescein angiography.
Results: In ARPE-19 cells, RSV rescued acrolein-induced cell death, alongside reversal of acrolein-induced superoxide dismutase expression. Resveratrol increased the mitochondrial bioenergetics, including basal respiratory rate, adenosine triphosphate synthesis via oxidative phosphorylation, and maximal mitochondrial capacity. In animal experiments, CS induced a significant increase in CNV following laser injury, and this increase in CNV was appreciably prevented following peripheral infusion of RSV.
Conclusions: Our results indicate that RSV, a major polyphenol found in red wine, exerts protection against acrolein-induced cytotoxicity in human ARPE-19 cells via increases in the mitochondrial bioenergetics. In addition, the antioxidant effect of RSV may contribute to protection against laser-induced CNV in animals exposed to CS. Therefore, RSV might be beneficial for treatment of acrolein-induced or CS-evoked RPE degeneration.
Keywords: choroidal neovascularization; mitochondrial bioenergetics; resveratrol; retinal pigment epithelium; superoxide dismutase.