Genetic variation in the cytochrome P450 2C19 (CYP2C19) gene has been documented gradually as the determinant conversion and variability in the antiplatelet effect of clopidogrel. The aims of this study were to determine the prevalence of clinically relevant allele variants (CYP2C19*2, CYP2C19*3, and CYP2C19*17) in a Thai study population, and finally determine whether the allele distributes and predicts metabolic phenotypes in clopidogrel treated patients. A total of 1,051 Thai patients participated in this study. Genotypes for CYP2C19 polymorphisms were detected by the microarray-based technique. Furthermore, results of genotyping and platelet aggregation in 96 cardiovascular disease patients on 75 mg clopidogrel maintenance daily dose therapy also were analyzed. Among 1,051 samples, the allele frequencies of CYP2C19 *1/*1, *1/*2, *1/*3, *2/*2, *2/*3, and *1/*17 were found in 428 (40.72%), 369 (35.10%), 72 (6.85%), 77 (7.32%), 59 (5.61%), and 45 (4.30%) of the patients, respectively. Homozygous CYP2C19 *3/*3 was found in one patient (0.10%). Therefore, 40.72% of the patients were predicted as extensive metabolizers, 41.95% as intermediate metabolizers, 13.03% as poor metabolizers, and 4.30% as ultra-rapid metabolizers. Among 96 patients, the frequency of poor metabolizers was significantly higher in the clopidogrel non-responder group than in the responder group (36.0% and 15.5%, respectively, P = 0.03). CYP2C19*1/*17 was observed in responders (n = 2; 2.8%). As a result, CYP2C19 variants were associated with clopidogrel non-responders. However, there is a need for further elucidation of the clinical importance and use of this finding to make firm and cost-effective recommendations for drug treatment in the future.
Keywords: CYP2C19 polymorphisms; Thai population; clopidogrel; non-responders; responders.