Background: Evidence supports the role for mitochondrial impairment in the pathophysiology of bipolar disorder (BD). BD has been associated with decreased mitochondrial electron transport chain activity and increased oxidative stress. Also, mitochondrial DNA (mtDNA) encodes mitochondrial electron transport chain proteins and has been associated with altered oxidative stress. Preclinical studies showed that lithium treatment increased mtDNA content, but no study has directly assessed mtDNA content in subjects with BD in vivo. Also, the effects of lithium treatment on mtDNA content have never been evaluated in humans.
Methods: Leukocyte mtDNA content using real time-PCR was evaluated in subjects with BD (n=23) in a depressive episode (≥18 in the 21-item Hamilton Depression Rating Scale) before and after 6-week lithium treatment versus healthy controls (n=24).
Results: mtDNA content showed no significant difference between subjects with BD at baseline and controls (p=0.46); also no difference was observed when comparing before and after lithium treatment. A trend for decreased mtDNA content was specifically observed in BD type I compared to controls and BD type II (p=0.05). Importantly, endpoint mtDNA copy number was significantly correlated with age.
Conclusion: In BD subjects who were younger, unmedicated and had a shorter duration of illness, no change was observed in mtDNA copy number. More studies with larger samples are warranted to evaluate mtDNA content changes in BD and its potential role as a treatment target, especially in BD type I and its association with aging.
Keywords: 21-item Hamilton Depression Scale; Antidepressant; BD; Bipolar disorder; CGI; Clinical Global Impression; Depression; ETC; HAM-D; HBb; Hemoglobin Beta; Lithium; Mitochondria; SCID; Structured Clinical Interview for Axis I DSM-IV-TR Disorders; Treatment; YMRS; Young Mania Rating Scale; electron transport chain; mitochondrial DNA; mtDNA.
© 2013.