Ninety-five percent of infectious agents enter through exposed mucosal surfaces, such as the respiratory and gastrointestinal (GI) tracts. The human GI tract is colonized with trillions of commensal microbes, including numerous Candida spp. Some commensal microbes in the GI tract can cause serious human infections under specific circumstances, typically involving changes in the gut environment and/or host immune conditions. Therefore, utilizing animal models of fungal GI colonization and dissemination can lead to significant insights into the complex pathophysiology of transformation from a commensal organism to a pathogen and host-pathogen interactions. This paper will review the methodologic approaches used for modeling GI colonization versus dissemination, the insights learned from these models, and finally, possible future directions using these animal modeling systems.