Enhanced apoptotic effects of dihydroartemisinin-aggregated gelatin and hyaluronan nanoparticles on human lung cancer cells

J Biomed Mater Res B Appl Biomater. 2014 Apr;102(3):455-62. doi: 10.1002/jbm.b.33023. Epub 2013 Sep 11.

Abstract

Recent studies suggest that dihydroartemisinin (DHA), a derivative of artemisinin isolated from the traditional Chinese herb Artemisia annua L., has anticancer properties. Due to poor water solubility, poor oral activity, and a short plasma half-life, large doses of DHA have to be injected to achieve the necessary bioavailability. This study examined increasing DHA bioavailability by encapsulating DHA within gelatin (GEL) or hyaluronan (HA) nanoparticles via an electrostatic field system. Observations from transmission electron microscopy show that DHA in GEL and HA nanoparticles formed GEL/DHA and HA/DHA aggregates that were approximately 30-40 nm in diameter. The entrapment efficiencies for DHA were approximately 13 and 35% for the GEL/DHA and HA/DHA aggregates, respectively. The proliferation of A549 cells was inhibited by the GEL/DHA and HA/DHA aggregates. Fluorescent annexin V-fluorescein isothiocyanate (FITC) and propidium iodide (PI) staining displayed low background staining with annexin V-FITC or PI on DHA-untreated cells. In contrast, annexin V-FITC and PI stains dramatically increased when the cells were incubated with GEL/DHA and HA/DHA aggregates. These results suggest that DHA-aggregated GEL and HA nanoparticles exhibit higher anticancer proliferation activities than DHA alone in A549 cells most likely due to the greater aqueous dispersion after hydrophilic GEL or HA nanoparticles aggregation. These results demonstrate that DHA can aggregate with nanoparticles in an electrostatic field environment to form DHA nanosized aggregates.

Keywords: aggregates; dihydroartemisinin; gelatin; hyaluronan; nanoparticles.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Absorbable Implants
  • Antineoplastic Agents, Phytogenic / administration & dosage
  • Antineoplastic Agents, Phytogenic / pharmacology*
  • Apoptosis / drug effects*
  • Artemisinins / administration & dosage
  • Artemisinins / pharmacology*
  • Cell Line, Tumor
  • Cell Survival / drug effects
  • Coloring Agents
  • Drug Carriers
  • Flow Cytometry
  • Fluorescein-5-isothiocyanate
  • Fluorescent Dyes
  • Gelatin / chemistry*
  • Humans
  • Hyaluronic Acid / chemistry*
  • Lung Neoplasms / drug therapy
  • Lung Neoplasms / pathology*
  • Microscopy, Electron, Transmission
  • Nanoparticles
  • Particle Size
  • Tetrazolium Salts
  • Thiazoles

Substances

  • Antineoplastic Agents, Phytogenic
  • Artemisinins
  • Coloring Agents
  • Drug Carriers
  • Fluorescent Dyes
  • Tetrazolium Salts
  • Thiazoles
  • artenimol
  • Gelatin
  • Hyaluronic Acid
  • thiazolyl blue
  • Fluorescein-5-isothiocyanate