Objective: Formaldehyde, a ubiquitous environmental pollutant has been classified as a human leukemogen. However, toxicity of formaldehyde in bone marrow, the target site of leukemia induction, is still poorly understood.
Methodology/principal findings: To investigate bone marrow toxicity (bone marrow pathology, hematotoxicity) and underlying mechanisms (oxidative stress, inflammation, apoptosis) in formaldehyde-exposed mice. Male Balb/c mice were exposed to formaldehyde (0, 0.5, and 3.0 mg/m(3)) by nose-only inhalation for 8 hours/day, over a two week period designed to simulate a factory work schedule, with an exposure-free "weekend" on days 6 and 7, and were sacrificed on the morning of day 13. Counts of white blood cells, red blood cells and lymphocytes were significantly (p<0.05) decreased at 0.5 mg/m(3) (43%, 7%, and 39%, respectively) and 3.0 mg/m(3) (52%, 27%, and 43%, respectively) formaldehyde exposure, while platelet counts were significantly increased by 109% (0.5 mg/m(3)) and 67% (3.0 mg/m(3)). Biomarkers of oxidative stress (reactive oxygen species, glutathione depletion, cytochrome P450 1A1 and glutathione s-transferase theta 1 expression), inflammation (nuclear factor kappa-B, tomour necrosis factor alpha, interleukin-1 beta), and apoptosis (activity of cysteine-aspartic acid protease 3) in bone marrow tissues were induced at one or both formaldehyde doses mentioned above.
Conclusions/significance: Exposure of mice to formaldehyde by inhalation induced bone marrow toxicity, and that oxidative stress, inflammation and the consequential apoptosis jointly constitute potential mechanisms of such induced toxicity.