Purpose: To determine whether the age-regulating protein klotho was expressed in the retina and determine whether the absence of klotho affected retinal function.
Methods: Immunohistochemistry and qPCR of klotho knockout and wild-type mice were used to detect klotho expression in retina. Immunohistochemistry was used to probe for differences in expression of proteins important in synaptic function, retinal structure, and ionic flux. Electroretinography (ERG) was conducted on animals across lifespan to determine whether decreased klotho expression affects retinal function.
Results: Klotho mRNA and protein were detected in the wild-type mouse retina, with protein present in all nuclear layers. Over the short lifespan of the knockout mouse (∼8 weeks), no overt photoreceptor cell loss was observed, however, function was progressively impaired. At 3 weeks of age neither protein expression levels (synaptophysin and glutamic acid decarboxylase [GAD67]) nor retinal function were distinguishable from wild-type controls. However, by 7 weeks of age expression of synaptophysin, glial fibrillary acidic protein (GFAP), and transient receptor potential cation channel subfamily member 1 (TRPM1) decreased while GAD67, post synaptic density 95 (PSD95), and wheat germ agglutinin staining, representative of glycoprotein sialic acid residues, were increased relative to wild-type mice. Accompanying these changes, profound functional deficits were observed as both ERG a-wave and b-wave amplitudes compared with wild-type controls.
Conclusions: Klotho is expressed in the retina and is important for healthy retinal function. Although the mechanisms for the observed abnormalities are not known, they are consistent with the accelerating aging phenotype seen in other tissues.
Keywords: aging; knockout; protein expression.