Association of increased arterial stiffness and p wave dispersion with left ventricular diastolic dysfunction

Int J Med Sci. 2013 Aug 26;10(11):1437-44. doi: 10.7150/ijms.5753. eCollection 2013.

Abstract

Background: The association between increased arterial stiffness and left ventricular diastolic dysfunction (LVDD) may be influenced by left ventricular performance. P wave dispersion is not only a significant determinant of left ventricular performance, but is also correlated with LVDD. This study is designed to compare left ventricular diastolic function among patients divided by brachial-ankle pulse wave velocity (baPWV) and corrected P wave dispersion (PWDC) and assess whether the combination of baPWV and PWDC can predict LVDD more accurately.

Methods: This cross-sectional study enrolled 270 patients and classified them into four groups according to the median values of baPWV and PWDC. LVDD was defined as impaired relaxation and pseudonormal/restrictive mitral inflow patterns.

Results: The ratio of transmitral E wave velocity to early diastolic mitral annulus velocity (E/Ea) was higher in group with higher baPWV and PWDC than in the other groups (all p <0.001). The prevalence of LVDD was higher in group with higher baPWV and PWDC than in the two groups with lower baPWV (p ≤ 0.001). The baPWV and PWDC were correlated with E/Ea and LVDD in multivariate analysis (p ≤ 0.030). The addition of baPWV and PWDC to a clinical mode could significantly improve the R square in prediction of E/Ea and C statistic and integrated discrimination index in prediction of LVDD (p ≤ 0.010).

Conclusions: This study showed increased baPWV and PWDC were correlated with high E/Ea and LVDD. The addition of baPWV and PWDC to a clinical model improved the prediction of high E/Ea and LVDD. Screening patients by means of baPWV and PWDC might help identify the high risk group of elevated left ventricular filling pressure and LVDD.

Keywords: P wave dispersion; brachial-ankle pulse wave velocity; left ventricular diastolic dysfunction..

MeSH terms

  • Adult
  • Arteries / physiopathology
  • Cross-Sectional Studies
  • Echocardiography
  • Female
  • Humans
  • Male
  • Middle Aged
  • Vascular Stiffness / physiology
  • Ventricular Dysfunction, Left / physiopathology*