At both the individual and societal levels, the health and economic burden of disability in older adults is enormous in developed countries, including the U.S. Recent studies have revealed that the disablement process in older adults often comprises episodic periods of impaired functioning and periods that are relatively free of disability, amid a secular and natural trend of decline in functioning. Rather than an irreversible, progressive event that is analogous to a chronic disease, disability is better conceptualized and mathematically modeled as states that do not necessarily follow a strict linear order of good-to-bad. Statistical tools, including Markov models, which allow bidirectional transition between states, and random effects models, which allow individual-specific rate of secular decline, are pertinent. In this paper, we propose a mixed effects, multivariate, hidden Markov model to handle partially ordered disability states. The model generalizes the continuation ratio model for ordinal data in the generalized linear model literature and provides a formal framework for testing the effects of risk factors and/or an intervention on the transitions between different disability states. Under a generalization of the proportional odds ratio assumption, the proposed model circumvents the problem of a potentially large number of parameters when the number of states and the number of covariates are substantial. We describe a maximum likelihood method for estimating the partially ordered, mixed effects model and show how the model can be applied to a longitudinal data set that consists of N = 2,903 older adults followed for 10 years in the Health Aging and Body Composition Study. We further statistically test the effects of various risk factors upon the probabilities of transition into various severe disability states. The result can be used to inform geriatric and public health science researchers who study the disablement process.
Keywords: EM algorithm; Health ABC study; Latent Markov model; continuation ratio model; generalized linear model.