To obtain a vaccine to defend from dormancy Mycobacterium tuberculosis, we constructed the recombinant Bacilli Calmette-Guérin (BCG) vaccine with Rv3133c encoding dormancy-correlated transcriptional regulatory protein DosR in Mycobacterium tuberculosis as a target gene, and evaluated its immunogenicity in BALB/c mice. In this study, we constructed the recombinant plasmids of rpMV361-Rv3133c using gene colon technology. We then transformed BCG strains with above-mentioned plasmids to obtain recombinant vaccine of rBCG-Rv3133c. We used the rBCG strains successfully constructed to vaccinate in BALB/c mice. 30d and 180d after immunization, the specific antibody titers were determined to investigate humoral responses induced by recombinant vaccine. We detected changes of splenocyte subsets of CD4+T, CD8+ T cells and cytokine of IFN-gamma secreted by splenocytes for evaluation of cellular immune responses. The results showed that the rBCG-Rv3133c was able to induce higher levels of antibody titer, stronger proliferative responses and higher IFN-gamma production comparing with BCG vaccine. The results also suggested that this recombinant vaccine was a more efficacious tuberculosis vaccine for further study.