Minimum Fisher regularization of image reconstruction for infrared imaging bolometer on HL-2A

Rev Sci Instrum. 2013 Sep;84(9):093503. doi: 10.1063/1.4820920.

Abstract

An infrared imaging bolometer diagnostic has been developed recently for the HL-2A tokamak to measure the temporal and spatial distribution of plasma radiation. The three-dimensional tomography, reduced to a two-dimensional problem by the assumption of plasma radiation toroidal symmetry, has been performed. A three-dimensional geometry matrix is calculated with the one-dimensional pencil beam approximation. The solid angles viewed by the detector elements are taken into account in defining the chord brightness. And the local plasma emission is obtained by inverting the measured brightness with the minimum Fisher regularization method. A typical HL-2A plasma radiation model was chosen to optimize a regularization parameter on the criterion of generalized cross validation. Finally, this method was applied to HL-2A experiments, demonstrating the plasma radiated power density distribution in limiter and divertor discharges.