We first characterized the morphology and immune-related activities of hemocytes in the subtropical oysters Saccostrea kegaki, Ostrea circumpicta, and Hyotissa hyotis using light microscopy and flow cytometry. Hemocytes of these three oyster species were classified into three main types: 1) granulocytes containing numerous granules in the cytoplasm, 2) hyalinocytes with no or fewer granules, and 3) blast-like cells characterized by the smallest size and very thin cytoplasm. The percentage of each hemocyte population was similar in all species; hyalinocytes were the most abundant cell in the hemolymph accounting for more than 59%, followed by granulocytes (23-31%) and blast-like cells (3-5%). The size of granulocytes of S. kegaki was smaller (P < 0.05) than those of O. circumpicta and H. hyotis. Light microscopy also allowed the description of vacuolated cells characterized by large vacuoles in the cytoplasm. Flow cytometry analysis confirmed that the granulocytes of the three oyster species were the major hemocytes engaged in cellular defense with the largest lysosome content, and the most active phagocytosis activity and oxidative activity, as was previously reported in several marine bivalves. Phagocytic activity was the lowest in S. kegaki hemocytes, and PMA-stimulated oxidative activity was the lowest in H. hyotis hemocytes. Our results provide the basic information of hemocytes population of three subtropical oysters for further investigations associated with various environmental disease stresses.
Keywords: Hemocyte; Hyotissa hyotis; Jeju Island; Lysosome; Ostrea circumpicta; Oxidative activity; Phagocytosis; Saccostrea kegaki.
Copyright © 2013 Elsevier Ltd. All rights reserved.