A- and C-type lamins are intermediate filament proteins responsible for the maintenance of nuclear shape and most likely nuclear architecture. Here, we propose that pronounced invaginations of A/C-type lamins into the nuclear interior represent channels for the transport of regulatory molecules to and from nuclear and nucleolar regions. Using fluorescent protein technology and immunofluorescence, we show that A-type lamin channels interact with several nuclear components, including fibrillarin- and UBF-positive regions of nucleoli, foci of heterochromatin protein 1 β, polycomb group bodies, and genomic regions associated with DNA repair. Similar associations were observed between A/C-type lamin channels and nuclear pores, lamin-associated protein LAP2α, and promyelocytic leukemia nuclear bodies. Interestingly, regions with high levels of A/C-type lamins had low levels of B-type lamins, and vice versa. These characteristics were observed in primary and immortalized mouse embryonic fibroblasts as well as human and mouse embryonic stem cell colonies exhibiting stem cell-specific lamin positivity. Our findings indicate that internal channels formed by nuclear lamins likely contribute to normal cellular processes through association with various nuclear and nucleolar structures.
Keywords: CHROMATIN; DNA REPAIR; ES CELLS; HP1 PROTEIN; LAMINS; NUCLEAR PORES; PML BODIES; TRANSCRIPTION.
© 2013 Wiley Periodicals, Inc.