Arabidopsis contains 16 putative chloroplast lumen-targeted immunophilins (IMMs). Proteomic analysis has enabled the subcellular localization of IMMs experimentally, but the exact biological and physiological roles of most luminal IMMs remain to be discovered. FK506-binding protein (FKBP) 16-1, one of the lumenal IMMs containing poorly conserved amino acid residues for peptidyl-prolyl isomerase (PPIase) activity, was shown to play a possible role in chloroplast biogenesis in Arabidopsis, and was also found to interact with PsaL in wheat. In this study, further evidence is provided for the notion that Arabidopsis FKBP16-1 (AtFKBP16-1) is transcriptionally and post-transcriptionally regulated by environmental stresses including high light (HL) intensity, and that overexpression of AtFKBP16-1 plants exhibited increased photosynthetic stress tolerance. A blue native-polyacrylamide gel electrophoresis/two-dimensional (BN-PAGE/2-D) analysis revealed that the increase of AtFKBP16-1 affected the levels of photosystem I (PSI)-light harvesting complex I (LHCI) and PSI-LHCI-light harvesting complex II (LHCII) supercomplex, and consequently enhanced tolerance under conditions of HL stress. In addition, plants overexpressing AtFKBP16-1 showed increased accumulation of PsaL protein and enhanced drought tolerance. Using a protease protection assay, AtFKBP16-1 protein was found to have a role in PsaL stability. The AtPsaL levels also responded to abiotic stresses derived from drought, and from methyl viologen stresses in wild-type plants. Taken together, these results suggest that AtFKBP16-1 plays a role in the acclimation of plants under photosynthetic stress conditions, probably by regulating PsaL stability.
© 2013 The Authors. Physiologia Plantarum published by John Wiley & Sons Ltd on behalf of Scandinavian Plant Physiology Society.