Gestational diabetes mellitus (GDM) is a common medical complication in pregnancy. Offspring exposed to maternal hyperglycemia have a higher birth weight and are prone to develop metabolic disease in adult life. The intrauterine environmental or nutritional status seems to be involved in the fetal programing. The concept of "Developmental Origins of Health and Disease" (DOHaD) has been widely accepted and it brings new insights into the molecular pathogenesis of human diseases. The underlying mechanism is still under discussion and epigenetic mechanisms may provide an explanation for the phenomenon. The aim of this review is to illustrate the role of epigenetic modifications in the development of insulin resistance in metabolic diseases induced by adverse intrauterine exposures. Changes in epigenetic mechanism may be an early event in pathogenesis and progression of the metabolic disease in humans. Studies on epigenetic modifications contribute to our understanding of long-term effects of in utero exposure and shed light on the disease prevention and treatment by modulating epigenetic changes.
Keywords: DNA methylation; epigenetics; gestational diabetes mellitus; intrauterine environment; programing.