Age-dependent patterns of bovine tuberculosis in cattle

Vet Res. 2013 Oct 16;44(1):97. doi: 10.1186/1297-9716-44-97.

Abstract

Bovine tuberculosis (BTB) is an important livestock disease, seriously impacting cattle industries in both industrialised and pre-industrialised countries. Like TB in other mammals, infection is life long and, if undiagnosed, may progress to disease years after exposure. The risk of disease in humans is highly age-dependent, however in cattle, age-dependent risks have yet to be quantified, largely due to insufficient data and limited diagnostics. Here, we estimate age-specific reactor rates in Great Britain by combining herd-level testing data with spatial movement data from the Cattle Tracing System (CTS). Using a catalytic model, we find strong age dependencies in infection risk and that the probability of detecting infection increases with age. Between 2004 and 2009, infection incidence in cattle fluctuated around 1%. Age-specific incidence increased monotonically until 24-36 months, with cattle aged between 12 and 36 months experiencing the highest rates of infection. Beef and dairy cattle under 24 months experienced similar infection risks, however major differences occurred in older ages. The average reproductive number in cattle was greater than 1 for the years 2004-2009. These methods reveal a consistent pattern of BTB rates with age, across different population structures and testing patterns. The results provide practical insights into BTB epidemiology and control, suggesting that targeting a mass control programme at cattle between 12 and 36 months could be beneficial.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Age Factors
  • Animal Husbandry / methods
  • Animals
  • Cattle
  • Female
  • Incidence
  • Male
  • Models, Biological
  • Risk Factors
  • Time Factors
  • Tuberculosis, Bovine / epidemiology*
  • Tuberculosis, Bovine / microbiology
  • United Kingdom / epidemiology