Influenza A H9N2 viruses are common poultry pathogens that occasionally infect swine and humans. It has been shown previously with H9N2 viruses that reassortment can generate novel viruses with increased transmissibility. Here, we demonstrate the modeling power of a novel transfection-based inoculation system to select reassortant viruses under in vivo selective pressure. Plasmids containing the genes from an H9N2 virus and a pandemic H1N1 (pH1N1) virus were transfected into HEK 293T cells to potentially generate the full panel of possible H9 reassortants. These cells were then used to inoculate ferrets, and the population dynamics were studied. Two respiratory-droplet-transmissible H9N1 viruses were selected by this method, indicating a selective pressure in ferrets for the novel combination of surface genes. These results show that a transfection-based inoculation system is a fast and efficient method to model reassortment and highlight the risk of reassortment between H9N2 and pH1N1 viruses.